Lipschitz functions and fuzzy number approximations
نویسنده
چکیده
We prove that some important properties of convex subsets of vector topological spaces remain valid in the space of fuzzy numbers endowed with the Euclidean distance. We use these results to obtain a characterization of fuzzy number-valued Lipschitz functions. This fact helps us to find the best Lipschitz constant of the trapezoidal approximation operator preserving the value and ambiguity introduced in a recent paper. Finally, applications in finding within a reasonable error the trapezoidal approximation of a fuzzy number preserving the value and ambiguity in the case when the direct formula is not applicable and an estimation for the defect of additivity of the trapezoidal approximation preserving the value and ambiguity are given. © 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Approximation of fuzzy numbers by convolution method
In this paper we consider how to use the convolution method to construct approximations, which consist of fuzzy numbers sequences with good properties, for a general fuzzy number. It shows that this convolution method can generate differentiable approximations in finite steps for fuzzy numbers which have finite nondifferentiable points. In the previous work, this convolution method only can be ...
متن کاملITERATIVE METHOD FOR SOLVING TWO-DIMENSIONAL NONLINEAR FUZZY INTEGRAL EQUATIONS USING FUZZY BIVARIATE BLOCK-PULSE FUNCTIONS WITH ERROR ESTIMATION
In this paper, we propose an iterative procedure based on two dimensionalfuzzy block-pulse functions for solving nonlinear fuzzy Fredholm integralequations of the second kind. The error estimation and numerical stabilityof the proposed method are given in terms of supplementary Lipschitz condition.Finally, illustrative examples are included in order to demonstrate the accuracyand convergence of...
متن کاملOn Lipschitz properties of generated aggregation functions
This article discusses Lipschitz properties of generated aggrega-tion functions. Such generated functions include triangular norms and conorms, quasi-arithmetic means, uninorms, nullnorms and continuous generated functions with a neutral element. The Lipschitz property guarantees stability of aggregation operations with respect to input inaccuracies, and is important for applications. We provid...
متن کاملQuasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions
We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 200 شماره
صفحات -
تاریخ انتشار 2012